Autophagy and treatment of patients with COVID-19; which drugs target the autophagy pathway?

Elahe Aleebrahim-Dehkordi1, Shirin Saberianpour1, Ebrahim Soleiman-Dehkordi1, Dariush Hooshyar3,4, Zahra Mojtabedi1, Neda Kianpour6, Ali Hasanpour-Dehkordi7*, Lillian Saberian8*, Mohsen Akhavan Sepahi9*

1Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
2Vascular and Endovascular surgery Research Center, Mashhad University of Medical Science, Mashhad, Iran
3Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
4Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
5Department of Health Care Administration and Policy, School of Public Health, University of Nevada Las Vegas, Las Vegas, Nevada, USA
6Biohouse, Inland Norway University of Applied Sciences, Hamar, Hedmark, Norway
7Social Determinants of Health Research Center, School of Allied Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
8Independent researcher and Author, Medical Doctor, 151 Rosewell Avenue, Toronto, ON, Canada
9Department of Pediatric Nephrology, School of Medicine, Qom University of Medical Sciences, Qom, Iran

Introduction

Autophagy is an evolutionary process for removing damaged organelles or malfunctioning intracellular proteins by the autophagosome's bilayer membrane, which eventually combines with the lysosome (1). The process is the only pathway that can destroy all cellular organs and pathogens, including fungi, parasites, bacteria, and viruses, either randomly or selectively. Many research groups are examining a strategy to combat COVID-19. In particular, research is underway to identify drugs that can target autophagy in COVID-19 virus infection. Several known drugs are currently under clinical evaluation for the autophagy process, given that regulating autophagy is a way to combat COVID-19. This study introduces drugs that target the autophagy pathway.

*Corresponding author: Ali Hasanpour-Dehkordi, Ph.D., Email; alihassanpourdehkordi@gmail.com and Mohsen Akhavan Sepahi, Email; Akhavansephahimm@gmail.com, Makhavan@muq.ac.ir
and subsequent uncovering of the viral nucleocapsid in the cytoplasm, the virus's replication process begins. Then, exocytosis mediates the release of replicated virus. Chloroquine inhibits autophagy by increasing the pH of the endosome/lysosome. Chloroquine hinders lysosomes' enzymatic activity by constructing a basal pH in lysosomes and prevents the integration of viral-lysosomal membranes (3, 6). Corticosteroids inhibit autophagy by inhibiting LC3, and some antiviruses, such as lopinavir/ritonavir and ruxolitinib, as well as Interferon alfa-2b can lead to cellular apoptosis by increasing the accumulation of autophagosomes and autolysosomes (7).

Based on a study by Gills et al., nelfinavir causes cell death through different pathways, including caspase-dependent apoptosis, non-apoptotic death, and inducing endoplasmic reticulum) stress and autophagy. It also inhibits growth factor receptor activation and disrupts Akt growth-dependent signaling. It inhibits tumor growth and regulates endoplasmic reticulum stress markers, autophagy, and apoptosis. Currently, some scientists are testing nelfinavir in phase I clinical trials of cancer treatment (8). Another study indicated that Lys05 is a new type of lysosomal autophagy inhibitor, which can be used in anti-cancer products (9). Wang et al represented that nitazoxanide inhibited cell growth by up-regulating ING1 (inhibitor of growth family member 1) expression and stopped the cell cycle. Nitazoxanide suppressed autophagy by blocking late-stage lysosome acidification, reducing ING1 cleavage. They also revealed that as an autophagy inhibitor, nitazoxanide stopped the cell cycle by upregulating ING1 expression due to increased transcription and reduced post-translational degradation by late-stage autophagy inhibition (10).

The PI3K/AKT/mTOR pathway is often overactive in endometrial cancer (EC). We evaluate the effect of ABTL0812, a new first-class molecule that offers a unique mechanism of action to inhibit this pathway (11). ABTL0812 modulates TRIB3 expression and thus inhibits the PI3K/AKT/mTOR axis and induces autophagy cell death. Therapeutic effects of ABTL0812 have been shown in vivo. ABTL0812 increases TRIB3 mRNA levels. TRIB3 mRNA levels can use ABTL0812 treatment monitoring (12). MSL is an autophagy enhancer that activates calcineurin and induces dephosphorylation/nuclear transfer of transcription factor EB (TFEB), the major regulator of lysosomal biogenesis and autophagy gene expression (13).

Authors' contribution
Primary draft by EAD, SD, SS, DH and AHD. First edit by ZM and NK. Second edit by LS. Finalization by MAS and AHD. All authors read and signed the final paper.

Conflicts of interest
The authors declare that there is no conflict of interest.

Ethical considerations
The authors have entirely observed ethical issues (including plagiarism, informed consent, misconduct, data fabrication, falsification, double publication, submission, and redundancy).

Funding/Support
None.

References


Copyright © 2021 The Author(s); Published by Society of Diabetic Nephropathy Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.