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Cardiovascular disease (CVD) is prevalent among patients with chronic kidney disease (CKD) and 
its occurrence and severity cannot be fully defined by the conventional cardiovascular risk factors 
namely age, hypertension, dyslipidaemia, diabetes mellitus and obesity. Contemporary studies have 
examined the role of non-conventional risk factors such as anemia, hyperhomocysteinemia, calcium 
and phosphate metabolism, vascular stiffness due to endothelial dysfunction ( ED), oxidative injury, 
and inflammation in the causation of CVD in CKD. Therapeutic interventions used in non-CKD 
patients are found to be less effective on patients with CKD. The purpose of this review was to 
gather available evidence on the CVD risk among CKD patients. Numerous mechanisms have been 
postulated to describe the increased atherogenicity in CKD patients. We discuss these mechanisms 
especially arterial stiffness, ED and inflammation in detail. In conclusion, CVD in CKD is still an 
unexplored area which needs further studies to uncover the possible mechanisms. Identifying newer 
therapies to improve health among this group of patients is of paramount importance.

ABSTRACT

Implication for health policy/practice/research/medical education:
Summarizing the available literature on the increased cardiovascular risk and postulated mechanisms among patients with chronic kidney 
disease guides  the  future researchers. Revealing new mechanisms or risk factors may have a significant impact on the healthcare management 
and policy.
Please cite this paper as: Silva EH, Wickramatilake CM, Lekamwasam S, Mudduwa LKB, Ubayasiri RA. Vascular dysfunction and 
atherosclerosis in chronic kidney disease; A distinct entity. J Nephropathol. 2019;8(2):e17. DOI: 10.15171/jnp.2019.17.

1. Background 
Chronic kidney disease (CKD) is a serious global health 
problem. Despite optimum treatment, growing number 
of patients, progress to end stage renal failure (ESRF) 
requiring regular dialysis and kidney transplant (KT). 
Currently more than one million patients worldwide 
are on dialysis with the numbers increasing every year 
(1). There are 30 dialysis centres in state hospitals in Sri 
Lanka equipped with 284 dialysis machines providing 
dialysis to patients with ESRF, free of charge (2). This is a 
considerable financial burden to the healthcare expenditure 

in the country. The probability of cardiovascular disease 
(CVD) is increased in patients with CKD and results in 
premature death due to CVD than other causes (3-5). 
Decline in gromerular filtration rate (GFR) is associated 
with increased CVD risk (6) and patients with ESRF have 
increased cardiovascular morbidity and mortality (7).

Increased risk of CVD in CKD cannot be solely described 
by the conventional cardiovascular risk factors like 
hypertension, diabetes mellitus, obesity and dyslipidemia 
(8). This raises the possibility that vasculopathy leading 
to CVD in CKD is a distinct yet uncertain entity. 
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Numbers of studies in the recent past have discussed the 
role played by the non-traditional CVD risk factors in 
CKD (9,10). Non-conventional risk factors identified 
include anemia, hyperhomocysteinemia, calcium and 
phosphate metabolism, vascular stiffness, oxidative injury, 
and inflammation (11,12). Furthermore, therapeutic 
interventions used in patients with CVD without renal 
dysfunction are found to be less protective in patients 
with CVD complicated by CKD. Drugs such as statins 
are less effective in declining CV mortality in patients 
with CKD or ESRF (13-17). A study on atherosclerotic 
animal models has shown that statins are less effective 
in reducing the degree of atherosclerosis in the uremic 
background (18). Furthermore, dialysis did not reduce 
the CV mortality in a group of patients (19). In addition, 
these would support the assumption that CVD in CKD 
is a distinct entity.

Despite optimum preventive measures, the CV mortality 
in ESRF was consistent over the last 20 years while there is 
an urgent need to understand the underlying mechanisms 
of CVD mortality in CKD especially in ESRF (20). 
This will enable identifying specific therapies which are 
efficient in managing CVD events in patients with renal 
impairment (12).

The objective of this review was to gather the existing 
evidence on the CVD risk in patients with CKD.

2. Atherosclerosis and CKD
Number of mechanisms has been suggested to explain the 
high level of atherogenicity in CKD patients. D’Apolito et 
al found that increased urea concentration in CKD leads 
to greater production of mitochondrial reactive oxygen 
species (ROS) by the arterial endothelial cells triggering 
pro-atherosclerotic pathways. Further, ROS inactivate 
the endothelial specific anti-atherosclerotic enzyme, PGI2 
synthase. Therapeutics which directly target urea mediated 
ROS production may improve the overall health of ESRF 
patients (10).

Studies have shown an impaired one-carbon metabolism 
leading to DNA hypomethylation in patients with 
CKD (21-23). However, Nanayakkara et al did not find 
an impairment of global DNA methylation in initial 
stages of CKD, in the absence of diabetes or clinical 
signs of atherosclerosis. They concluded that DNA 
hypomethylation is not a probable benefactor of hastened 
atherosclerosis in patients with kidney disease (8). 
However, that study only included mild to moderate CKD 
patients and the possibility of DNA hypomethylation and 
accelerated atherosclerosis in advanced CKD cannot be 
ruled out. 

Reffelmann et al found a link between eGFR and flow 
mediated vasodilation (FMD) of the brachial artery in 
CKD patients. The association remained unchanged in 

women after controlling for conventional risk factors and 
markers of inflammation, but became non-significant in 
males after adjusting for confounders (24). Flow mediated 
vasodilation of the brachial artery is associated with 
carotid intima media thickness (CIMT) and is weighed 
a forerunner of atherosclerosis and a predictor of CV risk 
(25-28).

Dursun et al explored the relationship between 
endothelial micro-particles, arterial sclerosis (using 
pulse wave velocity) and atherosclerosis (using CIMT) 
in children with CKD (29). Endothelial dysfunction 
(ED) in CKD results in apoptosis. Endothelial micro-
particles are tiny vesicular fragments of the endothelial cell 
membrane liberated during apoptosis or activation and it is 
contemplated a marker of ED. Cardiovascular risk factors 
namely high parathyroid hormone (PTH), blood pressure 
and C-reactive protein (CRP) and decreased albumin, 
haemoglobin and GFR increase the endothelial micro-
particles level. Dursun et al concluded that CIMT and 
pulse wave velocity are increased in children with CKD. 
Mean arterial blood pressure (MBP) is found to be the 
major risk factor for atherosclerosis and endothelial micro-
particles and MBP is the ultimate risk factor for arterial 
stiffness (29). Long-term activation of endothelium by 
uremic toxins leads to ED and endothelial micro-particles 
release from the vessels (30).

Carbamylation refers to a non-enzymatic process of 
chemical reformation of proteins. Accumulation of blood 
urea in CKD gives rise to high amounts of isocyanic acid 
in circulation leading to the stimulation of carbamylation 
of proteins. Carbamylated LDL (cLDL) level is high 
in uremic patients compared to normal individuals. 
Carbamylated LDL affects the endothelial cell damage 
and vascular smooth muscle cell propagation which results 
in atherosclerosis (31). The fundamental mechanism by 
which cLDL induces cell damage is unexplored. Autophagy 
denotes to a process of breakdown of proteins, organelles 
and other molecules by the lysosomes (32). Researchers 
in their latest studies have suggested that cLDL mediated 
oxidative stress may responsible for autophagy (33). It is 
evident that autophagy is a key player in cLDL-mediated 
endothelial cell damage that may partially describe the 
fundamental processes leading to the generation of 
atherosclerosis (34).

3. Risk factors for vascular dysfunction in CKD 
3.1. Arterial stiffness 
Arterial stiffness (AS) is used in assessing CV risk and 
detection of emerging vascular diseases. It is an indication 
of vascular aging. Amplified AS in kidney patients may 
result mainly from ED, vascular calcification, oxidative 
stress, chronic volume overload and inflammation (35). 
According to previous studies, AS is identified as an 
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independent predictor of CV morbidity and mortality in 
patients with diabetes mellitus, hypertension, and CKD 
(36-39). CIMT, ankle-brachial pressure index and AS 
measurements together are used in risk stratification of 
macrovascular lesions (40). Microvascular damage can 
be evaluated by the study of arterial current. Doppler 
sonography is used to measure the resistive index which 
provides information on impedance and renal vascular 
resistance (41). Renal resistive index (RRI) is useful 
in measuring the renal impairment in CKD patients 
(42). For the early revelation of vascular injury and for 
the prevention of cardiovascular diseases, analysis of 
microvascular and macrovascular circulation is useful. 
Calabia et al assessed the association between RRI and 
the markers of macrovascular damage and the role played 
by the ED in micro and macrovascular damage (43). It 
was revealed that RRI is an indirect measure of AS and 
atherosclerosis. It gives satisfactory information on the 
microvascular and macrovascular impairment. The 
relationship between ED and RRI could reveal the early 
damage to the renal microvasculature (43). 

3.2 Hyperphosphatemia and secondary hyperparathyroidism
Hyperphosphatemia and secondary hyperparathyroidism 
leading to vascular calcification are recognized CV risk 
factors in CKD patients (44,45). Fibroblast growth 
factor-23 (FGF23) is a bone-originated factor that is 
responsible for phosphate and vitamin D metabolism 
(46,47). Hyperphosphatemia, in CKD results in high 
FGF23 levels (48). According to a Sweden community-
based study, higher circulating serum FGF23 is 
independently associated with vascular dysfunction (49). 

3.3. Endothelial dysfunction
Endothelium acts as the barrier between the blood flow 
and the tissue. ED is an early indicator of the advancement 
of atherosclerosis (50). Therefore, ED is considered as the 
best predictor of future CVD events in CKD patients (51). 
ED begins at the early stages of renal impairment, where 
GFR begins to decrease and blood pressure increases (50). 
Increased endothelial triggering by inducements like pro-
inflammatory cytokines, growth factors, infectious agents, 
lipoproteins and oxidative stress, results in ED. ED leads 
to cell detachment, apoptosis and necrosis (30). Several 
biomolecules such as asymmetric dimethylarginine, (43) 

and sonographic methods like FMD of the brachial artery 
(52) were used by different researches to measure ED. 

However, the exact cause of ED in CKD is unidentified. 
Conventional risk factors are unable to describe the ED in 
CKD patients as unconventional risk factors are dominant 
in this group of patients. Unconventional risk factors 
potentially work through inflammation as an eventual 
common pathway (52).

Vitamin D deficiency, a non-conventional risk 
factor responsible for CVD risk in CKD is found to be 
independently related with ED in early stages of CKD 
(53). Experiments done on animal models have revealed 
the ability of vitamin D therapy to downregulate the 
inflammation and renin angiotensin system. However, 
immunomodulatory effects of vitamin D on humans are 
still undiscovered (54). 

3.4. Inflammation 
Inflammation is a key factor that contributes to ED seen 
in CKD patients. The worsening ED with declining 
eGFR suggests that the building up of uremic factors 
of inflammation may be the reason for increased CV 
events with progressing CKD. Recio-Mayoral et al 
found a relationship between CRP, FMD and intima-
media thickness which shows the association between 
inflammation, ED and atherosclerosis. However, that 
association is not adequate to determine a cause and 
impact relationship as many pathways of inflammation 
could relate to ED (52).

4. Distinction between the vascular dysfunction in 
CKD and conventional coronary artery disease
4.1. Possible mechanisms for the difference? 
D’apolito et al have suggested a mechanism accountable 
for the hastened atherosclerosis in CKD patients. They 
postulated that increased blood urea and amplified ROS 
production in adipocytes might escalate the mitochondrial 
ROS origination in endothelial cells, thereby injuring 
the cells and triggering pro-inflammatory pathways 
and deactivating the anti-atherosclerotic enzymes. 
Experiments carried out using human aortic endothelial 
cell cultures discovered that, urea induces mitochondrial 
ROS production results in activation of pro-inflammatory 
pathways and the deactivation of the anti-atherosclerotic 
enzyme PGI2 synthase. This would partially explain the 
mechanism of accelerated CVD risk in CKD patients 
(10). 

Recio-Mayoral et al studied three patient groups; pre-
dialysis, hemodialysis and kidney transplanted patients. 
They found an improvement in FMD in transplanted 
patients. They postulated that the improvement seen in 
this group might be due to the retrieval from urea linked 
non-conventional risk factors. Transplanted patients, 
however, showed a higher CVD risk compared to general 
population due to residual damage caused by uremia, 
immunosuppression and renal function abnormality (52).

5. Conclusions
Accelerated atherosclerosis in CKD is a growing concern 
but the exact mechanism of the pathophysiology remains 
unknown. It appears to be distinctly different from 
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conventional CVD. Currently there is a paucity of research 
and data in this subject, while, more studies are needed 
to clarify this issue. Studies should be focused on finding 
the inflammatory mechanism which is responsible for ED 
in CKD patients. Once the mechanisms are identified, 
studies should focus on finding newer drugs which can 
reduce the CVD risk in CKD patients. Randomized 
control trials should be planned to explore treatment 
modalities in this group of patients.
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