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Background: Oxidative stress and impaired antioxidant capacity in diabetes are associated 
with diabetic nephropathy. Metformin, as an adjunct to insulin could decrease oxidative 
stress and may therefore improve renal function in type 1 diabetes (T1D).
Objectives: To investigate the effects of metformin as adds-on therapy to insulin on renal 
dysfunction in T1D.
Materials and Methods: Male Sprague-Dawley rats (230-250 g) were divided into 5 groups 
(n =7). Rats in groups A and B were orally treated with 3.0 mL/kg body weight (BW) of 
distilled water, while those in groups C and D were treated with insulin (4.0 U/kg BW 
bid) or oral metformin (250 mg/kg BW), respectively. Group E rats were similarly treated 
with both metformin and insulin. Groups B-E were rendered diabetic by intraperitoneal 
injections of 65 mg/kg BW of streptozotocin. Fasting blood glucose concentrations and 
glucose tolerance tests were done. The animals were sacrificed by halothane overdose 
after 56 days, blood taken by cardiac puncture and kidneys excised and stored at -80°C for 
further analysis.
Results: Untreated diabetic rats exhibited significant weight loss, increased polydipsia and 
polyuria, impaired glucose tolerance, electrolyte retention, reduced creatinine clearance 
and urea excretion and increased oxidative stress compared to controls, respectively. 
However, these were reversed by treatment with metformin and insulin.
Conclusions: Metformin does not improve glycemic control in TID but exerts renoprotective 
effects by reducing oxidative stress in the presence of insulin. Metformin should therefore 
be considered for adjunct therapy with insulin in TID. 

ABSTRACT

Implication for health policy/practice/research/medical education:
Although metformin is known to exert no hypoglycemic effects in type 1 diabetes, our findings here suggest that it may mitigate 
the development of  diabetic nephropathy by its anti-oxidant effects. Metformin should therefore be considered as adjunct 
therapy to insulin in type 1 diabetes.
Please cite this paper as: Driver C, Hayangah JA, Nyane NA, Owira PMO. Metformin with insulin relieves oxidative stress and 
confers renoprotection in type 1 diabetes in vivo. J Nephropathol. 2018;7(3):171-181. DOI: 10.15171/jnp.2018.37.

1. Background
Type 1 diabetes (T1D) is caused by destruction 
of  pancreatic β-cells and is routinely treated by 
the exogenous subcutaneous insulin injections in 
order to maintain normoglycemia and mitigate the 
development of  diabetes complications (1-3). End-
point micro- and macro-vascular complications 
such as nephropathy, retinopathy and cardiovascular 
disease are associated with increased morbidity and 

mortality in diabetic patients. Diabetic nephropathy 
is progressive and irreversible and is characterised 
by glomerular hyperfiltration, epithelial hypertrophy, 
microalbuminuria, glomerulus basement membrane 
thickening and proteinuria and is the leading cause 
of  end-stage renal disease worldwide (4-8). Intensive 
glycaemic control and interventions with angiotensin 
converting enzyme (ACE)-inhibitors are intended to 
delay disease progression but are not curative (9). 
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Hyperglycemia results in mitochondrial 
overproduction of  reactive oxygen species (ROS), 
which, coupled with reduced antioxidant capacity in 
diabetes, are the driving forces in the development of 
diabetic complications (10-12). Chronic hyperglycemia 
increases oxidative stress by inducing a flux of  electron 
donors (NADH and FADH2) leading to electrons pile 
up in the mitochondrial inner membrane coenzyme 
Q and leakage at complexes I and III of  the electron 
transport chain (ETC) (10,13,14). Oxidative stress 
causes direct damage to the glomerulus and affects 
tubule-interstitial structures and functions, leading to 
diabetic nephropathy (15). Reduction in renal function 
may lead to electrolytes retention and imbalance 
hence accelerating the development of  cardiovascular 
disease complications (16,17). 
Metformin is commonly administered as a first-
line drug in the treatment of  type 2 diabetes as 
it suppresses hepatic gluconeogenesis, decreases 
fatty acid oxidation and increases peripheral insulin 
sensitivity, leading to improved glucose uptake in the 
skeletal muscles and adipose tissues (7,18-20). These 
effects of  metformin are mediated by its activation of 
5’-AMP-activated protein kinase (AMPK), (a known 
master energy sensor that restores cellular energy 
balance) and also by inhibition of  complex 1 of  the 
mitochondrial ETC leading to reduced mitochondrial 
ROS production (21-24). 
Currently, metformin is not clinically indicated for 
the treatment of  T1D although it has been noted to 
reduce daily insulin requirements without improving 
plasma HbA1c levels (21,25-27). Metformin is not 
metabolized in the body and is excreted unchanged 
by the kidneys (28) yet chronic renal disease is 
very common in diabetes patients. Consequently, 
renal insufficiency may increase plasma metformin 
concentrations and the perceived risk of  lactic acidosis 
hence glomerular filtration rate of  <30 mL/min/1.73 
m2 is clinically a contraindication to its administration 
(29). However, despite these concerns, metformin 
has been shown to improve renal function in diabetic 
patients (30) and despite lack of  supporting evidence 
from large scale clinical trials, the American Diabetes 
Association (ADA) and the European Diabetes 
Association have recommended administration 
of  metformin in diabetic patients with end-stage 
renal disease (31). Furthermore, two petitions have 
been logged with the American Food and Drug 
Administration (FDA) to consider use of  metformin 
in diabetic patients with moderate kidney disease (32). 
These appeals have been supported by experimental 
evidence which suggest that metformin could exert 
renoprotection by reducing ROS due to its antioxidant 

effects (33-35). Metformin has been shown to improve 
gentamycin-induced nephrotoxicity and also to 
protect renal tubules and podocytes in a diabetic state 
(30,32,34). Based on these findings it is conceivable to 
suggest that metformin can attenuate hyperglycemia- 
associated renal injury by decreasing ROS production 
and oxidative damage (36). This study therefore seeks 
to investigate the merits of  using metformin as an 
adjunctive therapy to insulin in the treatment of  T1D 
in order to prevent or delay the occurrence of  renal 
dysfunction and aspects of  diabetic nephropathy. This 
suggests that patients with T1D could benefit from 
metformin therapy to mitigate end-stage renal disease.

2. Objectives
1.	 To create a T1D model
2.	 To investigate the effects of  metforminon renal 

dysfunction in a T1D model
3.	 To investigate the effects of  metformin on 

glycemic control in T1D using insulin as a positive 
control

4.	 To investigate the effects of  metformin on 
hyperglycemia-associated oxidative stress in a 
T1D rat model

5.	 To study the effects of  metformin on 
hyperglycemia-associated renal dysfunction in 
T 1 D.

3. Materials and Methods 
3.1. Chemicals and reagents
Streptozotocin, D-glucose, citrate buffer, phosphate 
buffer, thiobarbituric acid (TBA), metaphosphoric 
acid chips, butylated hydroxytoluene and phosphoric 
acid were all purchased from Sigma-Aldrich Pty. Ltd, 
Johannesburg South Africa. Metformin (Accord, 
Sandton, South Africa), insulin (Novo Nordisk, 
Norway), portable glucometers and glucose test strips 
(OneTouch Select, Zug, Switzerland) were purchased 
from a local pharmacy. Superoxide dismutase (SOD) 
assay and glutathione (GSH) assay kits were purchased 
from Cayman Chemicals (Michigan, USA). Halothane 
used to euthanize the animals were provided by the 
Biomedical Resource Unit (BRU) of  the University of 
KwaZulu-Natal, Durban, South Africa.

3.2. Animal treatment
Male Sprague-Dawley rats (230-300 g) were housed 7 
rats per cage and had free access to food and drinking 
water for the duration of  the study (56 days). The 
rats were divided into five groups (n = 7), (Table 1) 
and maintained on a 12-hour dark/light cycle (08:00-
20:00) in an air-controlled room (temperature 25°C ± 
2°C, humidity 55 ± - 5%). Rats were fed normal chow 
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containing; protein, fibre, starch and calcium.

3.3. Induction of  experimental diabetes 
Fasting blood glucose (FBG) levels were determined 
then diabetes was induced in groups B-E via a single 
intraperitoneal injection of  streptozotocin (65 mg/
kg body weight [BW]) from a stock solution of  36 
mg/mL in 0.1 M citrate buffer of  pH 4.5 (Table 
1). Diabetes was confirmed 48 hours after the 
administration of  streptozotocin on venous blood 
obtained via tail pricks using glucometer strips and 
a hand-held glucometer (Bayer Acensia®). Rats with 
FBG above of  7.5 mmol/L were considered diabetic 
and included in the study.
The rats were weighed daily, water consumption 
similarly recorded and FBG tests done every 14 days. 
On day 51, 24-hour urine samples were collected from 
the animals in metabolic cages and kept at -80°C for 
further analysis. GTTs were done prior to sacrificing 
by halothane overdose. Blood samples were collected 
by cardiac puncture and kidneys excised and washed 
in phosphate-buffered saline before being snap-frozen 
in liquid nitrogen and stored at -80°C until further 
analysis. 

3.4. Methods 
3.4.1. Glucose tolerance tests
All animals were fasted overnight and FBG 
concentrations determined before intraperitoneal 
injections of  3.0 g/kg BW of  glucose in normal saline. 
Blood glucose concentrations were determined at 0, 
15, 30, 60, 90 and 120 minutes, respectively. Areas- 
under- the-curve (AUC) were calculated from blood 
glucose concentrations versus time (min) plots and 
expressed as mM × min or UC units. 
3.4.2. Urea and electrolytes
Serum and urine Na and K concentrations were 
measured by Beckman Coulter Synchron Aqua 
CAL® system using chloride, potassium and sodium 
diagnostic kits, respectively. The reactions were done 
by mixing 40 μL of  sample with 1.32 mL, of  buffer 
solution (constituted with Tris buffer) in a ratio of 

1:33. 
Creatinine concentrations in urine and serum samples 
were measured by a Beckman Coulter diagnostic 
kit, according to the manufacturer’s instructions as 
previously described (37). Creatinine clearance was 
hence calculated using the following formula: 

Creatinine urine ( mol/L) urine volume (mL)CrCl
Creatinine serum ( mol/L) time (mins)

µ
µ

= ×

An enzymatic reaction rate was used to determine the 
concentrations of  urea in urine samples by a Beckman 
Coulter diagnostic kit as per the reactions: 
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3.5. Oxidative stress
3.5.1. Superoxide dismutase assay
Both MnSOD and CuZnSOD were measured using 
SOD assay kit as per the manufacturer’s instructions. 
Kidney tissues were homogenised 1:7 w/v in ice cold 
buffer, pH 7.2 (containing 1.0 M EGTA, 210 mM 
mannitol, 70 nM sucrose and 20 mM HEPES) then 
centrifuged at 1500 g for 5 minutes. 
CuZnSOD was measured by adding 200 μL radical 
detector (tetrazolium salt solution) and 10 μL of 
sample (supernatant) or standard into the microtiter 
plate wells before initiating the reaction by adding 20 
μL of  diluted xanthine oxidase. MnSOD, was measured 
by adding 190 μL of  radical detector and 10 μL of  3 
mM potassium cyanide to the sample and xanthine 
oxidase. The plates were then covered and incubated 
at room temperature on a plate shaker for 30 minutes. 
Absorbance was read at 450 nm using a microplate 
reader (Biochron®, EZ Read 400, Cambridge, UK). 
SOD concentrations were calculated by extrapolation 
from the standard curve and values expressed in units 
of  enzyme normalized to cellular mg of  protein. 
3.5.2. Glutathione concentrations 
Kidney tissues were prepared by homogenisation 
in 1:7 w/v cold buffer, pH 7 (containing 50 mM 
MES and 1.0 mM EDTA). The samples were then 
centrifuged at 10 000 g for 15 minutes at 4°C before 
the supernatant was removed and stored at -20°C. 
Deproteination was carried out by mixing equal 
volumes of  sample homogenate supernatant with 
metaphosphoric acid solution and vortexing. The 
mixture was then centrifuged at 2000 g for 2 minutes 
and the supernatant collected. A solution of  4.0 M 
triethanolamine was then mixed with the supernatant 

Table 1. Animal treatment groupsa

Groups Distilled 
H2O

Insulin Metformin Metformin 
+ Insulin

A 3.0
B 3.0
C 4.0
D 250 
E 250 + 4.0 

aMetformin (mg/kg body weight [BW], orally), insulin (IU/kg BW, 
SC bd) and distilled water (mL/kg BW, orally) were administered 
daily.
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in a ratio of  50:1. 
The assay was carried out by adding 150 μL of 
Cayman’s glutathione assay cocktail (prepared as 
per the manufacturer’s instructions) to each well 
containing 50 μL of  sample and standards then 
incubating in the dark on an orbital shaker for 25 
mins and measuring the absorbance at 410 nm 
using a microplate reader (Biochron®, EZ Read 400, 
Cambridge, UK). Glutathione concentrations (µM/
mg protein) were then calculated by extrapolation 
from the standard curve.
3.5.3. Lipid peroxidation-thiobarbituric acid reactive substances 
(TBARS) assay
Lipid peroxidation was determined by measuring the 
concentrations of  malondialdehyde (MDA) in samples 
according to the modified methods of  Phulukdaree et 
al (38) and Hermes-Lima et al (39). In brief, a solution 
was prepared using TBA (1% w/v)/ 0.1 mM butylated 
hydroxytoluene (BHT). In a set of  clean tubes 200 uL 
of  plasma samples were added to a solution of  500 
μL of  2% phosphoric acid (H3PO4), 400 μL of  7% 
H3PO4, 400 μL of  the TBA/BHT and 200 μL of  1.0 
M HCl, respectively. The tubes were then incubated in 
boiling water (100°C) for 15 minutes before cooling to 
room temperature. To each test tube was then added 
1.5 mL of  butanol and vortexed then 200 μL of  the 
top phase transferred into a 96-well μL plate and 
absorbance read at 532 nm and 600 nm, respectively 
using a microplate reader (Biochron®, EZ Read 400, 
Cambridge, UK). The plasma MDA concentrations 
were then determined by using extinction coefficient 
156 mM-1. 
Tissue TBARS assays were carried out according to 
the modified method of  Hermes-Lima et al.40 Frozen 
kidney tissues were homogenised in a 1:10 (w/v) ratio 
with cold 1.1% phosphoric acid. A solution containing 
1% TBA, 50 mM NaOH and 0.1 mM BHT was made 
for the assay. Into clean sets of  test tubes 400 μL of 
sample homogenates were added to 400 μL TBA/
BHT solution and 200 μL of  7% phosphoric acid 
(final pH of  1.6) and similarly processed as plasma 
samples. 

3.6. Histological examinations
The excised kidneys were fixed in 10% buffered 
formalin and routinely processed for paraffin 
embedding. From each sample, 2 μm- thick sections 
were obtained and mounted on the microscope slides. 
Slides were stained with hematoxylin and eosin (H&E) 
and Masson‘s trichrome stain (MTS) for evaluation 
and differentiated in acid alcohol then washed with 
water to remove excess stain. The stained slides were 
viewed using The Nikon compound light microscope 

equipped with a camera for image capturing. The 
images were then analysed by a pathologist.

3.7. Ethical issues
The research followed the tenets of  the Declaration of 
Helsinki. This project and protocols were confirmed 
to be in accordance with the guidelines and approved 
by the Animal Ethics Committee of  the University 
of  the KwaZulu-Natal (Ethics reference number# 
078/14/Animal).

3.8. Statistical analysis
Data was presented as mean ± SD and analysed using 
the statistical software, GraphPad Prism® (San Diego, 
USA) version 5.0. Student t tests or one-way analysis 
of  variance (ANOVA) followed by Student-Newman–
Keuls test were carried out where appropriate. A P 
value of  <0.005 was considered statistically significant. 

4. Results
4.1. Natural growth 
Untreated diabetic animals experienced retarded 

Figure 1. (A) Natural growth of  animals presented as live weights. 
Sudden drops in weights coincided with the days when the animals 
were starved overnight for the determination of  FBG and (B) 
Changes in live weights measured as the difference in animal 
weights before and after treatment. *** P < 0.001 compared to 
control group; #, ^^ P < 0.05 compared to untreated diabetic 
group.
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weight gain compared to controls (Figure 1A). 
However, treatment with insulin with or without 
metformin resulted in increased weight gain compared 
to untreated diabetic rats, respectively. Metformin 
alone did not have significant effects on animal 
weights compared to the untreated diabetic controls. 
Consequently, weight gain measured as change 
in weight between the beginning and the end of 
the study showed that untreated diabetic animals 
experienced significantly (P < 0.001) negative weight 
gain compared to the normal control group (Figure 
1B). Insulin with or without metformin significantly 
(P < 0.05) improved weight loss compared to the 
untreated diabetic animals. However, metformin alone 
did not significantly improve weight loss in diabetic 
rats compared to the untreated diabetic ones (Figure 
1B). 

4.2. Fasting blood glucose concentrations
Diabetic animals had significantly (P < 0.001) higher 
FBG levels compared to the normal controls. 
Treatment with metformin, insulin or in combination 
did not significantly improve FBG compared to the 
untreated diabetic rats (Figure 2). 

4.3. Glucose tolerance tests
Blood glucose concentration-time plots showed that 
diabetic animals were severely glucose intolerant 
compared to controls (Figure 3A). Calculated 
AUCs suggested that untreated diabetic rats were 
significantly (P < 0.001) glucose intolerant compared 
to controls and that treatment with insulin with or 
without metformin significantly (P < 0.05) improved 
glucose intolerance in diabetic rats compared to non-
treated diabetic group (Figure 3B). Treatment with 
metformin alone did not significantly improve glucose 
intolerance in diabetic rats compared to the untreated 

controls.

4.4. Water intake and urine output
Untreated diabetic animals drank significantly 
(P < 0.001) more water than controls while treatment 
with metformin and insulin alone or in combination 
significantly (P < 0.05) reduced water intake corrected 
to body weights compared to untreated diabetic rats 
(Figure 4A), suggesting reduction of  polydipsia in 
diabetic animals. Furthermore, untreated diabetic 
animals showed significantly (P < 0.0001) increased 
urine output compared to controls but treatment with 
either metformin, insulin or both did not significantly 
reduce urine output in diabetics rats compared to non-
treated diabetic ones (Figure 4B), suggesting increased 
polyuria in diabetic rats.

4.5. Urea and electrolytes
Urinary Na+ and K+ output were significantly 
(P < 0.001) reduced in untreated diabetic animals 
compared to normal controls (Figure 5). Treatment 
with metformin and insulin alone or in combination 
significantly (P < 0.05) improved urinary Na+ and K+ 
excretion compared to untreated diabetic controls 
(Figure 5). 
Serum creatinine corrected to body weight were 
significantly (P < 0.001) higher in the untreated 

Figure 2. FBG concentrations during treatment. Blood was 
obtained by tail pricking then mounted on strips and glucose levels 
measured using a hand held glucometer. Insulin or metformin 
treatment was withheld prior to the tests. * P < 0.001 for untreated 
control versus the control group.

Figure 3. (A) Blood glucose concentrations measured at 
30-minute intervals for 2 h and plotted against time after the fasted 
animals were challenged with intraperitoneal 3.0 g/kg of  glucose 
in normal saline in GTT. (B) Calculated AUC from blood glucose 
concentrations/time plots. ***P < 0.001 compared to control and 
^ P < 0.05 compared to the untreated diabetic group.

Fig 1. A: Natural growth of animals presented as live weights. Sudden drops in weights 

coincided with the days when the animals were starved overnight for the determination of 

FBG and B: Changes in live weights measured as the difference in animal weights before and 

after treatment.  *** P < 0.0001 compared to control group; #, ^^ P < 0.05 compared to 

untreated diabetic group. 
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diabetic rats compared to controls (Figure 6A). 
However, treatment with metformin and insulin but 
not either alone significantly (P < 0.05) reduced serum 
creatinine concentrations compared to untreated 
diabetic animals (Figure 6A). 
Creatinine excretion was significantly (P < 0.001) 
reduced in untreated diabetic animals compared to the 
control group. However, treatment with insulin and 
metformin but not either alone similarly significantly 
(P < 0.01) increased urinary creatinine excretion in 
diabetic animals compared to untreated diabetic 
animals (Figure 6B). 
Consequently, calculated creatinine clearance 
suggested that non-treated diabetic animals had 
significantly (P < 0.05) reduced creatinine clearance 
compared to the control rats but treatment with 
metformin and insulin in combination significantly 
(P < 0.01) increased creatinine clearance compared to 
non-treated diabetic rats (Figure 7). 
Untreated diabetic rats had significantly (P < 0.001) 
reduced urine urea output compared to the control 
group (Figure 8). However, treatment with metformin 
and insulin significantly (P < 0.005) increased urea 
excretion compared to the untreated diabetic rats 
(Figure 8). Treatment with insulin or metformin alone 

Figure 4. (A) Average daily water consumption during the 
treatment period expressed as mL/g body weight (BW). (B) 
Average 24-h urine output when the animals were put in metabolic 
cages and the urine collected. *** P < 0.001 compared to controls; 
^ P < 0.05 compared to untreated diabetic group.

Figure 5. Electrolyte concentrations in 24-hr urine samples 
collected when the animals were put in metabolic cages. *** 
P < 0.001 compared to control group. ^, ^^ P < 0.05 compared to 
untreated diabetic group.

did not significantly increase urea concentrations 
compared to untreated diabetic animals.

4.6. Biomarkers of  renal oxidative stress
4.6.1. Superoxide dismutase 
MnSOD activity was significantly (P < 0.005) increased 
in the kidneys of  untreated diabetic rats compared 
to the control group (Figure 9A). Treatment with 
metformin, with or without insulin, significantly 
(P < 0.001) reduced MnSOD activity compared 
to untreated diabetic rats. Similarly, the activity of 
CuZnSOD was significantly (P < 0.05) increased 
in the kidneys of  untreated diabetic compared to 
the control groups and treatment with metformin 
alone or with insulin significantly (P < 0.05) reduced 
CuZnSOD activity in diabetic rats compared to the 
untreated diabetic group (Figure 9B).

4.6.2. Lipid peroxidation measured by TBARS assay
Plasma and renal tissue homogenate MDA 
concentrations were significantly (P < 0.05) elevated 
in untreated diabetic rats compared to the control 
groups, respectively but treatment of  diabetic rats 
with insulin, metformin alone or in combination with 
insulin significantly (P < 0.05) reduced plasma and 
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Figure 4. A: Average daily water consumption during the treatment period expressed as mL/g 

body weight (BW). B: Average 24-hr urine output when the animals were put in metabolic 

cages and the urine collected. *** p<0.0001 compared to controls; ^p<0.05 compared to 

untreated diabetic group. 
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Figure 4. A: Average daily water consumption during the treatment period expressed as mL/g 

body weight (BW). B: Average 24-hr urine output when the animals were put in metabolic 

cages and the urine collected. *** p<0.0001 compared to controls; ^p<0.05 compared to 

untreated diabetic group. 
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Figure 5. Electrolyte concentrations in 24-hr urine samples collected when the animals were 

put in metabolic cages. *** p< 0.0001 compared to control group. ^, ^^ p <0.05 compared to 

untreated diabetic group.  

A 

K

Na



 www.nephropathol.com                                                   Journal of  Nephropathology, Vol 7, No 3, July 2017

                Renoprotective effects of  metformin in type 1 diabetes

177

Figure 6. (A) Serum creatinine concentrations corrected to live 
body weights and B: Creatinine excretion in 24-h urine samples. 
Creatinine concentrations were expressed as µM/g body weight 
(BW). *** P < 0.001 compared to the  control group. ^^ P < 0.05 
compared to untreated diabetic group, respectively

Figure 7. Calculated creatinine clearance using the formula; 
[Creatinine concentrations in urine/ Creatinine concentrations in 
serum) × urine volume (mL)/ time (min). *P < 0.05 compared to 
control rats and ^^ P < 0.01 compared to untreated diabetic rats.

Figure 8. Urea concentrations measured in urine collected 
after the animals were confined in metabolic cages for 24 h. 
*** P < 0.001 compared to control rats and ^P < 0.05 compared to 
untreated diabetic rats. 

renal MDA concentrations compared to untreated 
diabetic groups, respectively (Figure 10A and B).
4.6.3. Glutathione 
Glutathione concentrations measured in renal tissue 
homogenates were significantly (P < 0.05) reduced in 
untreated diabetic rats compared to controls (Figure 
11). However, treatment with metformin alone or 
in combination with insulin significantly (P < 0.05) 
increased glutathione concentrations in diabetic rats 
compared to non-treated diabetic rats. 

4.7. Histopathology of  the kidneys
H&E stains of  kidney sections viewed under light 
microscope showed mesangial hypercellularity and 
enlarged glomeruli basement membranes in untreated- 
and metformin only treated-diabetic rats (Figure 12). 
Metformin and insulin treatment reduced mesangial 
expansion and reduced enlargement of  glomeruli 
basement membrane similarly to controls.
 
5. Discussion
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Figure 6: A: Serum creatinine concentrations corrected to live body weights and B: Creatinine 

excretion in 24-hr urine samples. Creatinine concentrations were expressed as µM/g body 

weight (BW). *** p< 0.0001 compared to the  control group. ̂ ^ p < 0.05 compared to untreated 

diabetic group, respectively 
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Figure 7.  Calculated creatinine clearance using the formula: {Creatinine concentrations in 

urine/ Creatinine concentrations in serum) X urine volume (ml)/ time (mins)}. *P<0.05 

compared to control group and ^^ p < 0.01 compared to untreated diabetic group. 
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Figure 8: Urea concentrations measured in urine collected after the animals were confined in 

metabolic cages for 24 hours. *** P< 0.0001 compared to control group and ̂ p< 0.05 compared 

to untreated diabetic rats.  
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mg/kg BW of  streptozotocin, a cytotoxic glucose 
analogue which completely destroys the pancreatic 
β-cells and obliterates insulin secretion leading to 
hyperglycemia (40). Diabetic rats presented with 
classic symptoms of  T1D such as weight loss (Figure 
1), impaired glucose tolerance (Figures 2 and 3), 
polyuria and polydipsia (Figure 4). Treatment with 
metformin only, did not show significant improvement 
in weight gain while insulin alone or in combination 
with metformin as expected, significantly improved 
weight loss compared to untreated diabetic groups, 
respectively (Figure 1). Since insulin treatment 
was withheld on the day of  GTT, it was therefore 
not surprising that FBG or GTT did not improve 
in insulin only-treated animals compared to the 
untreated diabetic groups (Figures 2 and 3). It is 
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therefore apparent in our model that anabolic effects 
of  insulin reduced protein and lipid catabolism while 
metformin, a known anti-obesity agent in type 2 
diabetes did not improve weight loss in diabetic rats. 
Consequently, metformin had no significant effects 
on FBG but in the presence of  insulin, glucose 
intolerance was significantly improved compared to 
the untreated diabetic rats (Figures 2 and 3) similarly 
to previous studies that have shown that despite its 
improvement of  insulin sensitivity, metformin does 
not lower HBA1c is T1D (21,25,41).
Diabetes is the most common cause of  impairment 
of  renal function leading to end-stage renal disease 
and increased risk of  morbidity and mortality (42-44). 
Deteriorated renal function in diabetes is characterised 
by microalbuminuria, increased plasma and reduced 
urine creatinine due to low creatinine clearance, 
reduced urea excretion, salt and water retention (45). 
Although we did not measure microalbuminuria, our 
diabetic model presented with reduced urea excretion 
and creatinine clearance, low urine output, Na and 
K retention (Figures 6-8) suggesting impairment 

of  renal functions. In the development of  diabetic 
nephropathy, microalbuminuria is not apparent at 
stage 2 where there is normal glomerular filtration 
rate, steady serum creatinine levels, elevated blood 
pressure and glomerulosclerosis (36,46). Consequently, 
kidney sections stained with H&E showed mesangial 
hypercellularity and enlarged glomeruli basement 
membranes in metformin only-treated or untreated 
diabetic rats (Figure 12). Treatment with metformin 
and insulin in combination but not separately 
significantly improved creatinine clearance, urea 
excretion, and urine output compared to non-treated 
diabetic animals (Figures 6 to 8). However, metformin 
and insulin in combination or separately significantly 
improved Na and K excretion in diabetic rats (Figure 5). 
These results therefore suggest that the development 
of  diabetic nephropathy in the untreated diabetic rats 
was at or beyond stage 3 (normally characterised by 
microalbuminuria, decline in glomerular filtration rate 
and glomerulosclerosis) (46) and that treatment with 
metformin and insulin delayed/prevented the onset of 
diabetic nephropathy and potentially cardiovascular 

Figure 10. Lipid peroxidation measured as MDA concentrations 
by TBARS assay in: A:- Plasma and B:- Renal tissue homogenates. 
*** P < 0.001 compared to untreated normal control, ^,^^P < 
0.05 compared to untreated diabetic control.

Figure 9. Renal tissue homogenates SOD activity expressed U/
mg of  protein. A: MnSOD and B: CuZnSOD. ***, * P < 0.005 
compared to the control group, ̂  P < 0.001 compared to untreated 
diabetic group. 
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Figure 10. Lipid peroxidation measured as MDA concentrations by TBARS assay in: A:- 

Plasma and B:- Renal tissue homogenates . ***P< 0.0001 compared to untreated normal 

control, ^,^^P<0.05 compared to untreated diabetic control. 
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Figure 10. Lipid peroxidation measured as MDA concentrations by TBARS assay in: A:- 

Plasma and B:- Renal tissue homogenates . ***P< 0.0001 compared to untreated normal 

control, ^,^^P<0.05 compared to untreated diabetic control. 
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complications in diabetic animals.
Hyperglycemia has been shown to decrease the body’s 
total antioxidant capacity and increases oxidative 
stress, which accelerates diabetic complications 
(13,18,47). SOD is a powerful antioxidant that is 
induced by increased oxidative stress (3, 11). In our 
study, untreated diabetic rats had significantly elevated 
mitochondrial MnSOD or cytosolic CuZnSOD 
levels, compared to controls (Figure 9). Metformin 
alone or in combination with insulin significantly 
reduced SOD activities compared to the untreated 
diabetic rats (Figure 9). Similarly, the highly inducible 
potent antioxidant, GSH, was significantly depleted 
in the kidneys of  untreated diabetic rats compared 
to controls but treatment of  diabetic rats with 
metformin alone or in combination with insulin 
significantly reversed this (Figure 11). Oxidative 
stress resulting from hyperglycemia depletes GSH 
through diversion of  NADPH by aldolase reductase 
to produce sorbitol in the polyol pathway (11, 47). 
It is therefore conceivable that metformin decreased 
oxidative stress in the mitochondria by activating 
AMPK and inhibiting complex 1 of  the ETC leading 
to reduced ROS production (23,5,48), hence reduced 
SOD activity (34,49) and also increased GSH salvage. 
These observations are further supported by our 
results which show that metformin effects were more 
enhanced on MnSOD than CuZnSOD (Figure 10). 
Additionally, metformin may directly quench ROS in 
the mitochondria, or alternatively induce MnSOD and 
promote mitochondrial biogenesis by activating the 
PGC-1alpha pathway as previously reported (50). The 
effects of  metformin on other nuclear transcription/
response factors (Nrf) or antioxidant response 
elements which are known to boost antioxidant 

capacity are currently under investigation by our 
group but for now the molecular mechanisms of  the 
apparent metformin effects remain speculative.
Consequently, MDA concentrations measured by 
TBARS assay in both plasma and kidney homogenates 
were significantly elevated in non-treated diabetic 
rats compared to controls but treatment of  diabetic 
rats with metformin either alone or in combination 
with insulin normalized this (Figure 10). This further 
suggests that whereas insulin boosts the capacity 
of  endogenous enzymatic antioxidant systems by 
its known anabolic effects, metformin has direct or 
indirect antioxidant effects that reduced ROS hence 
preserved or regenerated endogenous antioxidants. 

6. Conclusions
The data presented here indicates that metformin 
does not improve glycaemic control in TID but 
does have protective effect against diabetic renal 
dysfunction. This suggests that in combination with 
insulin, metformin can mitigate the development of 
diabetic nephropathy.
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