Contrast-associated acute kidney injury, new findings and old believes

Mohamad Ali Dayani¹, Mohammadali Mohajel Shoja², Mohammadreza Ardalan²*¹

¹Department of Radiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
²Division of Nephrology and Hypertension, VA Medical Center, University of Arizona, Tucson, AZ, USA


Keywords: Contrast-induced nephropathy, Nephrotoxin, Contrast-associated acute kidney injury, Contrast medium, Reactive oxygen species, Contrast-induced nephropathy.

The administration of contrast medium to increase the diagnostic accuracy of computed tomography is usual. However, contrast material has the risk of renal toxicity (1,2). Contrast-induced nephropathy firstly detected in 1950, in a group of patients with underlying kidney disease who underwent coronary angiography. Since that time, it is considered as a nephrotoxin, while numerous amount of interventions and literature has devoted to this issue. In fact, post-contrast acute kidney injury is one of the foremost common causes of acute renal failure (1). Various mechanisms like direct toxicity of contrast agents to the tubular epithelial cells, running to apoptosis and necrosis of epithelial cells and finally dysfunction of tubules. Accordingly, an indirect mechanism of contrast-induced nephropathy is vasomotor alteration in kidney due to vasoactive substances like endothelin, nitric oxide and prostaglandins, which leads to ischemic injury (3-5). Then ischemic injury directs to intra-renal vasoconstriction and diminution of glomerular blood flow. Diminution of glomerular blood flow attributed to the release of reactive oxygen species and consequently ischemia of the outer part of the medulla, furthermore deteriorating renal tubular cell damage. Contrast-induced nephropathy has been detected to be related to the poor clinical consequences, comprising augmented lengthened duration of hospital admission, the necessity for renal replacement therapy and an increase in major adverse cardiac events, and also increase of morbidity and mortality (1,6,7). However, the risk of acute renal failure after the use of contrast agents is also predisposed by patients’ condition and the type of procedure. Therefore, prompt recognition of the risk factors to eradicate the potentially avoidable acute kidney injury after contrast medium administration is a serious healthcare issue. Pre-existing chronic renal failure, high osmolality agents, diabetes mellitus, hemodynamic instability, high volume of contrast agent and intra-arterial iodine administration are the risk factors for contrast-induced nephropathy. In critically ill individuals with acute kidney injury, it is difficult to discriminate the role of contrast medium and other probable factors to the extension of acute kidney injury, since some additional factors like inflammation, hypotension, infection, and other nephrotoxic substances may aggravate the condition (8-10). In a report by Weisbord et al, no advantage of intravenous sodium bicarbonate above intravenous sodium chloride or of oral acetylcysteine above placebo for the prevention of death, the need for dialysis, or permanent deterioration in renal function at 90 days or the prevention of contrast-induced nephropathy was seen. In this study unlike most previous trials their primary end-point was not the most broadly accepted definition...
of contrast-associated acute kidney injury (increase in serum creatinine 25% or at least 0.5 mg/dL from baseline at 3 to 5 days after angiography) (11). In our mind, consideration on this new end point is logical. In a recent study by Nijsen et al, no prophylaxis to be non-inferior and cost-saving in stopping contrast-associated renal injury compared with intravenous hydration regarding the present clinical practice guidelines was mentioned (12). More recently, Mehran et al highlighted an important insight toward contrast-associated acute kidney injury as a marker of increased risk of chronic kidney disease and long-term death. A small and transient elevation in the plasma creatinine should be considered as a marker of poor outcomes rather than a mediator of the outcome (13). In fact, kidney with its high energy requirements and complex microvascular network is particularly susceptible to contrast-associated acute kidney injury including vasoconstriction, tubule toxicity, medullary hypoxia, and reactive oxygen species injury. Preventive consideration of sodium bicarbonate, oral acetyl cysteine and hydration are hypothetically toward those underlying mechanism (1,14). We can consider contrast-associated acute kidney injury as a stress test that reveals an existing generalized micro-vascular abnormality. We can compare the contrast-associated acute kidney injury with cardiac stress test that reveals an existing underlying cardiac abnormality, since most of the early creatinine elevation returns to normal. However, underlying pathophysiology mechanisms still remain unclear even after normalization of serum creatinine. Therefore, if we are considering the acute creatinine elevation as our primary target, just we are targeting an epiphenomenon. Even we can make an analogy between this condition and micro-albuminuria as the later predicts the target organ involvement in the future but not directly predispose to cardiovascular risks. Hence, contrast-associated acute kidney injury may predict future development toward chronic kidney disease (15).

References


Contrast-associated kidney injury


Copyright © 2019 The Author(s): Published by Society of Diabetic Nephropathy Prevention. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.