Effect of sevelamer on serum phosphorus levels in chronic kidney disease and hemodialysis patients; a systematic review and meta-analysis

Farshad Gharebakhshi1, Mohammad Hossein Taklif2, Arash Izadpanah Ghahremani3, Mohamad Khaledi4, Sara Abbasian5, Seyedeh Mahsa Shariati Sough6, Fatemeh Vashahi Torfi7, Hamidreza Khodabandeh1, Elnaz Hajian8*

1Department of Radiology, Imam Hossein Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Department of Nursing, Student Research Committee, Faculty of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
3Department of Emergency Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
4Department of Nursing, Faculty of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
5Department of Nursing, Faculty of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
6Department of Nursing, Faculty of Nursing and Midwifery, Rajaie Cardiovascular Medical and Research Center, Tehran, Iran
7Student Research Committee, Faculty of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
8Department of Nursing, Young and Elite Researchers Club, Bandar Abbas branch of Islamic Azad University, Bandar Abbas, Iran

Article type: Meta-analysis

Article history:
Received: 10 March 2023
Accepted: 12 June 2023
Published online: 3 July 2023

Keywords:
Sevelamer
Sevelamer hydrochloride
Sevelamer carbonate
Phosphorus
Chronic kidney disease
Renal insufficiency
Hemodialysis
Renal dialysis
Extracorporeal dialysis

ABSTRACT

Introduction: Hyperphosphatemia is an independent risk factor for mortality in chronic kidney disease (CKD) patients.

Objectives: This systematic review and meta-analysis aimed to investigate the effect of Sevelamer on serum phosphorus levels in CKD and hemodialysis patients.

Materials and Methods: The data were obtained after searching the international databases of Cochrane, PubMed, Scopus, Web of Science, and the Google Scholar search engine until February 28, 2023. The heterogeneity of articles was assessed using the I2 index. The data were analyzed in STATA 14, and P values < 0.05 were considered significant.

Findings: A total of 22 articles were assessed with a total sample size of 3221. Sevelamer reduced calcium levels in CKD and hemodialysis patients compared with those in the comparison group (standardized mean difference [SMD]: -0.67; 95% CI: -1.23, -0.11); however, sevelamer had no significant effect on serum parathyroid hormone (PTH) levels (SMD: 0.07; 95% CI: -0.39, 0.54) and Ca × P product (SMD: -0.20; 95% CI: -0.41, 0). A significant decrease in serum phosphorus level was observed in patients who had taken sevelamer for a maximum of 12 weeks compared with the comparison group (SMD: -0.27; 95% CI: -0.54, -0.01); however, no significant decrease in serum phosphorus level was observed in patients who had taken sevelamer for more than 12 weeks. A significant decrease in serum phosphorus level was observed in sevelamer users compared to placebo group members (SMD: -0.36; 95% CI: -0.68, -0.05).

Conclusion: The administration of sevelamer reduced serum phosphorus levels in CKD and hemodialysis patients compared with those in the placebo group in the short term. Therefore, physicians are recommended to prescribe sevelamer for a maximum period of three months.

Registration: This study has been compiled based on the PRISMA checklist, and its protocol was registered on the PROSPERO website (ID: CRD42023406804).

Implication for health policy/practice/research/medical education: In this systematic review and meta-analysis, on the effect of sevelamer on serum phosphorus levels in chronic kidney disease and hemodialysis patients; we found that the type of disease, type of sevelamer, and sevelamer dose did not significantly influence the effectiveness of sevelamer in reducing serum phosphorus levels.

*Corresponding author: Elnaz Hajian, Email: Elnazhajian7999@gmail.com
Introduction

Chronic kidney disease (CKD) is considered a major public health problem worldwide. As the disease progresses, the filtering capacity of the kidney gradually decreases until renal replacement therapy (RRT) becomes necessary (1). In 2017, more than 700 million people worldwide were diagnosed with CKD, and the number of patients requiring RRT is predicted to exceed 5 million by 2030 (2). Failure to implement timely and effective measures has increased the prevalence of end-stage renal disease (ESRD) (3).

Hyperphosphatemia is a common complication in hemodialysis patients (4). Hyperphosphatemia is associated with increased cardiovascular complications and mortality in patients with stage 4 and 5 CKD (5). Removal of phosphate during dialysis and dietary phosphate restriction are clinical procedures to manage serum phosphate levels in CKD patients (6).

The four main phosphate binders, including calcium-based binders (calcium acetate and calcium carbonate), non-calcium-based binders (sevelamer and lanthanum), aluminum-based binders, and iron-based binders, lower serum phosphate levels (7). In addition to decreasing phosphorus absorption, sevelamer (carbonate/hydrochloride) can also modify adaptive mechanisms (e.g., reduce fibroblast growth factor 23 (FGF23) or parathyroid hormone (PTH)) due to its potential to absorb phosphorus in the intestine without added calcium (8). Some studies suggest that sevelamer reduces mortality in hemodialysis patients (9,10). However, the effect of sevelamer on phosphate levels in hemodialysis patients remains controversial. Given the conflicting results of previous studies, this systematic review and meta-analysis investigated the effect of sevelamer on serum phosphate levels in CKD and hemodialysis patients.

Materials and Methods

Study design

This systematic review and meta-analysis were conducted based on the PRISMA (preferred reporting items for systematic reviews and meta-analyses) guideline, and the study protocol was registered on the PROSPERO (International Prospective Register of Systematic Reviews) website (ID: CRD42023406804).

Search strategy

Reputable international databases of Cochrane, Web of Science, Scopus, and PubMed, and the Google Scholar search engine were searched without a time limit using the following MeSH (Medical Subject Headings) search terms: “Sevelamer; sevelamer hydrochloride; sevelamer carbonate; phosphorus; chronic kidney disease; renal insufficiency, chronic; hemodialysis; renal dialysis; extracorporeal dialysis”.

Various combinations of keywords were searched using the operators “AND” and “OR”, and the search was updated until February 28, 2023. All relevant studies and references were also searched. The following search strategy was used to find relevant articles in PubMed:

(Sevelamer[Title/Abstract] OR Sevelamer Hydrochloride[Title/Abstract] OR Sevelamer Carbonate[Title/Abstract]) AND (Phosphorus[Title/Abstract] OR Phosphorus 31[Title/Abstract]) AND (Chronic Kidney Disease[Title/Abstract] OR Renal Insufficiency, Chronic[Title/Abstract] OR Hemodialysis[Title/Abstract] OR Renal Dialysis[Title/Abstract] OR Extracorporeal Dialysis[Title/Abstract])

Components of the Population, Intervention, Comparison, and Outcome (PICO) framework include Population: CKD and hemodialysis patients, Intervention: the use of sevelamer, Comparison: the placebo group or patients who had used other phosphate binders, and Outcome: assessing serum phosphate levels.

Inclusion criteria

All randomized clinical trials, observational, and quasi-experimental that investigated the effect of sevelamer on serum phosphate levels in CKD and hemodialysis patients were assessed.

Exclusion criteria

Articles that had investigated the effect of a combination of multiple drugs on serum phosphate levels in CKD and hemodialysis patients, repeated articles, low-quality articles (based on the Cochrane Risk-of-bias tool for randomized trials), articles that had investigated the effect of sevelamer on the lipid profile of CKD and hemodialysis patients, articles that had reported only qualitative results, articles that did not contain sufficient data for data analysis, and those without full text were removed.

Quality evaluation

After the initial article list was generated, two researchers independently evaluated the quality of the articles using the Cochrane risk-of-bias tool for randomized trials (11). This checklist assesses potential sources of bias in clinical trials in 7 steps. The risk of bias in each step is interpreted as “low,” “high,” or “unclear.” Reviewers examined and solved cases of discrepancy using the inter-reviewer agreement method. In addition, observational studies were evaluated using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist (12).

Data extraction

To avoid bias and errors in data collection, two members of the research team extracted the following data from the
relevant articles: first author's name, year of publication, duration of sevelamer use, sample size, mean age of patients, type of disease, type of sevelamer, type of study, sevelamer dose, and comparison group, as well as the mean and standard deviation (SD) of serum phosphate, calcium, PTH, and (Ca×P product) levels before and after the interventions.

Data analysis
Because of the quantitative nature of the initial outcome, the standardized mean difference (SMD) was used to calculate the effect size of the intervention. SMD is a classic effect size statistic that shows the strength of the relationship between a desired intervention and the respective outcome. The closer the SMD value is to 0, the weaker the relationship would be; however, values close to 1 indicate stronger relationships. The selected articles were combined based on the frequency, mean, and SD of different variables. The heterogeneity of the selected articles was assessed using the I² index and a random effects model. The data were analyzed in STATA 14, and P values < 0.05 were considered significant.

Results
A total of 532 articles were screened, of which 145, 32, and 9 articles were excluded after title screening, abstract screening, and full text screening, respectively. Another 324 articles that did not meet other exclusion criteria were also removed. Finally, 22 high-quality articles were included in the systematic review and meta-analysis process (Figure 1).

A total of 22 articles published between 1999 and 2023 were assessed with a total sample size of 3221 (1604 people in the sevelamer group and 1617 people in the comparison group). Moreover, 11 articles had examined the effect of sevelamer on CKD patients, whereas the remaining 11 articles investigated hemodialysis patients (Table 1).

The administration of sevelamer had no significant effect on serum phosphorus levels in CKD and hemodialysis patients compared with those in the comparison group (SMD: 0.01; 95% confidence interval [CI]: -0.32, 0.35) (Figure 2).

The use of sevelamer hydrochloride (SMD: 0.02; 95% CI: -0.23, 0.27) and sevelamer carbonate (SMD: 0.48; 95% CI: -0.88, 1.83) had no significant impact on serum phosphorus levels in CKD and hemodialysis patients compared with those in the comparison group (Figure 3).

There was a statistically non-significant relationship between sevelamer dose and serum phosphorus levels in

![Figure 1](https://nephropathol.com/journal.png)
Table 1. Summary of the information available in the reviewed articles

<table>
<thead>
<tr>
<th>First author, year of publication</th>
<th>Country</th>
<th>Type of study</th>
<th>No. of people in the sevelamer group</th>
<th>No. of people in the comparison group</th>
<th>Type of disease</th>
<th>Duration of treatment</th>
<th>Type of Sevelamer</th>
<th>Sevelamer dose per day</th>
<th>Compared with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chertow, 2002(13)</td>
<td>USA</td>
<td>RCT</td>
<td>99</td>
<td>101</td>
<td>Hemodialysis</td>
<td>52 Weeks</td>
<td>Hydrochloride</td>
<td>800 mg</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Block, 2005 (14)</td>
<td>USA</td>
<td>RCT</td>
<td>54</td>
<td>55</td>
<td>Hemodialysis</td>
<td>18 Months</td>
<td>Hydrochloride</td>
<td>Not report</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Kakuta, 2011 (15)</td>
<td>Japan</td>
<td>RCT</td>
<td>79</td>
<td>84</td>
<td>Hemodialysis</td>
<td>12 Months</td>
<td>Hydrochloride</td>
<td>9 g</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Di Iorio, 2013 (9)</td>
<td>Italy</td>
<td>RCT</td>
<td>232</td>
<td>234</td>
<td>Hemodialysis</td>
<td>36 Months</td>
<td>Hydrochloride</td>
<td>4800 mg</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Ruggiero, 2019 (16)</td>
<td>Italy</td>
<td>RCT</td>
<td>26</td>
<td>27</td>
<td>CKD</td>
<td>3 Months</td>
<td>Carbonate</td>
<td>4800 mg</td>
<td>Placebo</td>
</tr>
<tr>
<td>Bleyer, 1999 (17)</td>
<td>USA</td>
<td>RCT</td>
<td>42</td>
<td>42</td>
<td>Hemodialysis</td>
<td>8 Weeks</td>
<td>Hydrochloride</td>
<td>465 mg 1 to 3 tablets</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Lin, 2010(18)</td>
<td>Taiwan</td>
<td>RCT</td>
<td>26</td>
<td>26</td>
<td>Hemodialysis</td>
<td>8 Weeks</td>
<td>Hydrochloride</td>
<td>One, two, or three capsules of sevelamer (800 mg)</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Katopodis, 2006 (19)</td>
<td>Greece</td>
<td>RCT</td>
<td>15</td>
<td>15</td>
<td>Hemodialysis</td>
<td>20 Weeks</td>
<td>Hydrochloride</td>
<td>2-4 capsule 403 mg</td>
<td>Aluminum hydroxide</td>
</tr>
<tr>
<td>Liabeuf, 2017(20)</td>
<td>France</td>
<td>RCT</td>
<td>39</td>
<td>39</td>
<td>CKD</td>
<td>12 Weeks</td>
<td>Carbonate</td>
<td>4.5 g</td>
<td>Placebo</td>
</tr>
<tr>
<td>Bleikstad, 2012 (21)</td>
<td>Norway</td>
<td>RCT</td>
<td>10</td>
<td>11</td>
<td>CKD</td>
<td>6 Weeks</td>
<td>Carbonate</td>
<td>800 mg</td>
<td>Alphacalcidol</td>
</tr>
<tr>
<td>Caglar, 2008 (22)</td>
<td>Sweden</td>
<td>RCT</td>
<td>25</td>
<td>25</td>
<td>CKD</td>
<td>8 Weeks</td>
<td>Not report</td>
<td>4800 mg</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Maason, 2022 (23)</td>
<td>USA</td>
<td>RCT</td>
<td>15</td>
<td>15</td>
<td>CKD</td>
<td>12 Weeks</td>
<td>Carbonate</td>
<td>4800 mg</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Chertow, 2003 (24)</td>
<td>USA</td>
<td>RCT</td>
<td>54</td>
<td>54</td>
<td>Hemodialysis</td>
<td>52 Weeks</td>
<td>Carbonate</td>
<td>Not report</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Iimori, 2012 (25)</td>
<td>Japan</td>
<td>Observational</td>
<td>156</td>
<td>156</td>
<td>Hemodialysis</td>
<td>37 Months</td>
<td>Hydrochloride</td>
<td>Not report</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>Lin, 2014 (26)</td>
<td>Taiwan</td>
<td>RCT</td>
<td>23</td>
<td>23</td>
<td>Hemodialysis</td>
<td>48 Weeks</td>
<td>Carbonate</td>
<td>Not report</td>
<td>2400 mg</td>
</tr>
<tr>
<td>Nain, 2023 (27)</td>
<td>India</td>
<td>RCT</td>
<td>75</td>
<td>75</td>
<td>CKD</td>
<td>6 Months</td>
<td>Carbonate</td>
<td>2400 mg</td>
<td>Lanthanum Carbonate</td>
</tr>
<tr>
<td>Gulati, 2010 (28)</td>
<td>India</td>
<td>RCT</td>
<td>11</td>
<td>11</td>
<td>CKD</td>
<td>12 Weeks</td>
<td>Hydrochloride</td>
<td>1200 mg</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>Akizawa, 2014 (29)</td>
<td>Japan</td>
<td>RCT</td>
<td>50</td>
<td>54</td>
<td>Hemodialysis</td>
<td>12 Weeks</td>
<td>Hydrochloride</td>
<td>3.0 or 6.0 g</td>
<td>Bixalomer</td>
</tr>
<tr>
<td>Talkavatakar, 2021(30)</td>
<td>Thailand</td>
<td>RCT</td>
<td>20</td>
<td>20</td>
<td>CKD</td>
<td>24 Weeks</td>
<td>Not report</td>
<td>2400 mg</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>Tahir, 2022 (31)</td>
<td>Pakistan</td>
<td>Quasi-</td>
<td>47</td>
<td>44</td>
<td>CKD</td>
<td>12 Weeks</td>
<td>Carbonate</td>
<td>1200 mg</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Gupta, 2020 (32)</td>
<td>India</td>
<td>Observational</td>
<td>405</td>
<td>405</td>
<td>CKD</td>
<td>9 Months</td>
<td>Not report</td>
<td>800 mg</td>
<td>Calcium asetate</td>
</tr>
<tr>
<td>Chen, 2022 (33)</td>
<td>China</td>
<td>RCT</td>
<td>101</td>
<td>101</td>
<td>CKD</td>
<td>8 Weeks</td>
<td>Carbonate</td>
<td>2.4–12 g</td>
<td>Placebo</td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; RCT: randomized clinical trial
Figure 2. Forest plot showing effect of sevelamer on the phosphorus level of CKD and hemodialysis patients compared to the comparison group.

Figure 3. The effect of sevelamer on the phosphorus level of CKD and hemodialysis patients compared to the comparison group by type of sevelamer.

Figure 4. The effect of sevelamer on the phosphorus level of CKD and hemodialysis patients compared to the comparison group by dose of sevelamer.

Figure 5. The effect of sevelamer on the phosphorus level of CKD and hemodialysis patients compared to the comparison group by type of disease.

CKD and hemodialysis patients compared with those in the comparison group—800 mg sevelamer per day: (SMD: -0.27; 95% CI: -0.72, 0.17), 1200 mg sevelamer per day: (SMD: -0.31; 95% CI: -1.02, 0.40), 2400 mg sevelamer per day: (SMD: 1.77; 95% CI: 0.11, 3.43), 4500 mg sevelamer per day: (SMD: -0.52; 95% CI: -2.81, 1.77), and 9000 mg sevelamer per day: (SMD: -0.33; 95% CI: -0.78, 0.11) (Figure 4).

No significant relationship was observed between the type of disease and the effect of sevelamer on serum phosphorus levels—CKD patients: (SMD: 0.04; 95% CI: -0.27, 0.19), hemodialysis patients: (SMD: 0.12; 95% CI: -0.61, 0.85) (Figure 5).

A significant decrease in serum phosphorus level was observed in patients who had taken sevelamer for a maximum of 12 weeks compared to those in the comparison group (SMD: -0.27; 95% CI: -0.54, -0.01); however, no significant decrease in serum phosphorus level was observed in those who had taken sevelamer for longer than 12 weeks (Figure 6).

A significant decrease was observed in serum phosphorus levels in sevelamer users compared to placebo group members (SMD: 0.12; 95% CI: -0.36; 0.36).
However, there was no significant difference between the use of sevelamer and aluminum hydroxide (SMD: -0.04; 95% CI: -0.76, 0.67), sevelamer and alfacalcidol (SMD: -0.31; 95% CI: -1.18, 0.55), sevelamer and calcium acetate (SMD: -0.25; 95% CI: -0.50, 0.01), sevelamer and calcium carbonate (SMD: -0.29; 95% CI: -1.07, 0.50), and sevelamer and bixalomer (SMD: -0.23; 95% CI: -0.61, 0.1) in terms of lowering serum phosphorus levels. On the other hand, a significant increase in serum phosphorus level was found in sevelamer users compared to those using lanthanum carbonate (LC) (SMD: 7.13; 95% CI: 6.25, 8) (Figure 7).

In a quasi-experimental study, sevelamer decreased patients’ serum phosphorus levels (SMD: -0.59; 95% CI: -1.01, -0.17); however, in randomized controlled trials (RCTs) (SMD: 0.07; 95% CI: -0.34, 0.48) and observational studies (SMD: -0.14; 95% CI: -1.20, 0.91), sevelamer did not significantly affect participants’ phosphorus levels (Figure 8).

Sevelamer decreased calcium levels in CKD and hemodialysis patients compared to those in the comparison group (SMD: -0.67; 95% CI: -1.23, -0.11); however, Sevelamer did not significantly influence levels of serum PTH and Ca × P product (Table 2).

Discussion

Sevelamer significantly reduced serum phosphorus levels in CKD and hemodialysis patients compared to those in the comparison group. Serum phosphorus levels of patients who had taken sevelamer for a maximum of 12 weeks decreased significantly compared to members of the comparison group. In addition, a significant decrease was observed in serum phosphorus levels of sevelamer users compared to members of the placebo group. The type of disease (hemodialysis or CKD), type of sevelamer (carbonate or hydrochloride), and the sevelamer dose did not significantly influence the effectiveness of sevelamer in reducing serum phosphorus levels. The discrepancy between the present results and the findings of some previous meta-analyses regarding the effectiveness of

Figure 6.

The effect of sevelamer on the phosphorus level of CKD and hemodialysis patients compared to the comparison group by duration of treatment.

Figure 7.

The effect of sevelamer on the phosphorus level of CKD and hemodialysis patients by comparison group.

Figure 8.

The effect of sevelamer on the phosphorus level of CKD and hemodialysis patients compared to the comparison group by type of study.
Sevelamer in hemodialysis

Sevelamer in lowering serum phosphorus levels can be due to the fact that the type of disease, type of sevelamer, the drug dose, duration of use, age group of patients, and the comparison group in this meta-analysis differed from other studies.

In a meta-analysis, Wang et al investigated the effects of calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. They found a significant decrease in serum phosphorus levels in the calcium acetate group compared with the calcium carbonate group at both 4 weeks (mean difference [MD]: -0.15 mmol/L, 95% CI: -0.28 to -0.01) and 8 weeks (MD: -0.25 mmol/L, 95% CI: -0.40 to -0.11) after administration. However, there was no difference between the two groups in serum calcium, PTH, and Ca × P levels (34). The findings on the changes in PTH and Ca × P levels are consistent with the results of the present study.

Huang et al conducted a meta-analysis with 950 patients and found that LC effectively controls hyperphosphatemia in dialysis patients compared to those in the placebo group (SMD: -0.06; 95% CI: -0.27 to -0.86). In addition, fewer changes were observed in serum PTH and Ca × P product levels of patients who used LC compared with those in the placebo group (SMD: -0.21; 95% CI: -0.48 to 0.06 and SMD: -0.90; 95% CI: -1.13 to -0.66) (35).

In a meta-analysis with 1754 participants, Li et al concluded that ferric citrate significantly reduces serum phosphorus levels in CKD patients compared to those in the placebo group (MD: -1.76 mg/dL, 95% CI: -2.78 to -0.75) (36). This is consistent with the result of the present research.

Guo et al observed no significant difference between ESRD patients taking LC and those in the placebo group in terms of serum phosphate levels (weighted mean difference [WMD]: 0.26, 95% CI: -0.06 to 0.58) and serum calcium levels (WMD: -0.24, 95% CI: -0.77 to 0.29) (37). However, in contrast to the findings of Guo et al, in the present study, sevelamer lowered serum calcium and serum phosphorus levels in hemodialysis patients compared to those in the placebo group.

Zhao et al performed a meta-analysis in 2021 to examine the effects of LC and other phosphate binders on CKD patients. They found that LC can effectively reduce phosphorus levels, Ca × P product, and intact PTH in CKD patients (38). Given the conflicting results of previous meta-analyses on the effect of LC on hyperphosphatemia, researchers are suggested to compare the effects of sevelamer and LC in future clinical trials.

Conclusion
The use of sevelamer decreased serum calcium levels and serum phosphorus levels in hemodialysis patients compared with patients in the comparison and placebo groups, respectively. In addition, a significant reduction in serum phosphorus levels was observed in patients who had taken sevelamer for a maximum of three months compared to those in the comparison group. The use of sevelamer was effective in the short term; however, no conclusive result was obtained on the optimal dose of sevelamer or the best type of sevelamer that reduces serum phosphorus levels. Therefore, researchers are suggested to compare the effects of sevelamer (carbonate and hydrochloride) and the effects of high and low doses of sevelamer on serum phosphorus levels in CKD and hemodialysis patients.

Limitations of the study
Lack of access to the full text of some articles, lack of presentation of results by patients’ sex and age, and uneven distribution of studies in different subgroups are the main limitations of the study.

Acknowledgments
The authors would like to thanks Hamid Nasri and Diana Sarokhani for guidance and editing of manuscript registration on the PROSPERO website.

Authors’ contribution
Conceptualization: MHT and AIG.
Methodology: MKh, and SA.
Validation: FGh and SMSS.
Formal analysis: FVT and HKh.
Research: EH, AIG and MHT.
Resources: FGh, MKh and SMSS.
Data curation: HKh and FVT.
Visualization: SA and AIG.
Supervision: FGh.
Project management: EH.
Writing–original draft: HKh, EH, MKh, SMSS, and FVT.
Writing–reviewing and editing: MHT, FGh, AIG and SA.

Table 2. The effect of sevelamer on the Calcium, Parathyroid hormone, Ca × phosphorus product of CKD and hemodialysis patients compared to the comparison group

<table>
<thead>
<tr>
<th>Variables</th>
<th>SMD</th>
<th>Low limit</th>
<th>Up limit</th>
<th>P value</th>
<th>I²(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>-0.67</td>
<td>-1.23</td>
<td>-0.11</td>
<td>0.000</td>
<td>97.9</td>
</tr>
<tr>
<td>Parathyroid hormone</td>
<td>0.07</td>
<td>-0.39</td>
<td>0.54</td>
<td>0.000</td>
<td>95.1</td>
</tr>
<tr>
<td>Ca × P product</td>
<td>-0.20</td>
<td>-0.41</td>
<td>0</td>
<td>0.002</td>
<td>64.2</td>
</tr>
</tbody>
</table>

Conflicts of interest
There are no competing interests.

Ethical issues
Ethical issues (including plagiarism, data fabrication, double publication) have been completely observed by the author. This study has been compiled based on the PRISMA checklist, and its protocol was registered on the PROSPERO website (ID: CRD42023406804).

Funding/Support
None.

References
Sevelamer in hemodialysis

