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Introduction: Identification of electron-dense immune deposits in electron microscopy (EM) images 
is integral to the diagnosis of medical renal disease. Deep learning has the potential to augment this 
process, especially in areas with limited resources.
Objectives: Our study explores the feasibility of applying deep learning to detect electron dense 
immune deposits in electron microscopy images from medical renal biopsies. 
Patients and Methods: EM images (N=900) from native and transplant kidney biopsies were processed 
into 4530 tiles (512 x 512 pixels). These tiles were reviewed and classified into one of three categories: 
deposits absent, deposits present, and indeterminate. This classification resulted in 1255 images 
with consensus agreement for deposits present and deposits absent. These 1255 images were then 
used to train a machine learning model, using 1006 images for training, and 249 images for testing. 
Results: The overall accuracy on the test data was a competitive 78%, and the F1 scores for deposits 
absent and present was 0.76 and 0.79, respectively.
Conclusion: This study demonstrated the feasibility of creating and applying a machine learning 
model that performs competitively in identifying electron dense deposits in EM images.

ABSTRACT

Implication for health policy/practice/research/medical education:
This study demonstrates novel application of deep learning towards analysis of EM images in the diagnosis of renal disease. It also demonstrates 
feasibility of introducing artificial intelligence/machine learning concepts into pathology residency training programs, especially those with 
low resources.
Please cite this paper as: Alsadi A, Majeed NK, Saeed DM, Dharmamer Y, Singh MB, Patel TN. A deep-learning approach at automated detection 
of electron-dense immune deposits in medical renal biopsies. J Nephropathol. 2022;11(3):e17123. DOI: 10.34172/jnp.2021.17123.

Introduction
The diagnosis of medical renal disease involves careful 
consideration and integration of clinical data and 
morphological features. The renal pathologist routinely 
utilizes light microscopy, immunofluorescence studies, 
and electron microscopy (EM) to render a diagnosis. 
Electron microscopy is most commonly used in renal 
pathology for the evaluation of glomerulopathies, but also 
in a variety of other neoplastic and non-neoplastic diseases 
in other organ systems (1) (Table 1). In particular for renal 
pathology, EM facilitates ultrastructural examination of 
the glomerular, tubular, and vascular compartments to 
a degree not possible using other modalities. Diagnostic 
advantages of EM include: 1) Detecting glomerular 

injury, 2) utility in small or suboptimal tissue samples, 
and 3) increased resolution as compared to other 
methods, which enable pathologists to identify, further 
localize, and/or characterize electron-dense deposits along 
glomerular and/or tubular basement membranes (2). In 
a study of 88 cases including 79 native kidney biopsies 
and 8 allograft kidney biopsies, EM was found to have an 
important diagnostic role in 75% of cases, and essential 
or necessary in 25% of the cases (3). In a series of 115 
native kidney biopsies, EM was found to be crucial for 
the diagnosis or have an important contribution in 12% 
and 20% of the cases, respectively (4). Although recent 
advances in ancillary techniques such as molecular 
testing will undoubtedly enhance our role in diagnosing 
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renal diseases, EM continues to be integral to pathology 
practice. 

Despite routine and wide usage, EM has limitations, 
most notably in the assessment of glomerular diseases. 
Certain glomerular diseases, including pauci-immune and 
anti-glomerular basement membrane, do not have specific 
ultrastructural findings. Typical procurement of tissue for 
renal biopsy typically involves collecting 1mm cubes from 
the ends of needle core biopsies (5). As a result, affected 
areas for diseases that are focal or not otherwise diffusely 
penetrative may not be adequately sampled. Finally, 
EM does not allow for distinguishing the biochemical 
specificity of ultrastructural lesions (2). This limitation 
poses a challenge not only when attempting to distinguish 
the nature of immune-complexes visualized, but also 
between artifactual or benign entities that look similar to 
pathologic lesions. Our study seeks to address this latter 
shortcoming by leveraging deep learning to distinguish 
between immune-complex electron-dense deposits and 
other features, such hyaline, mesangial interposition, or 
artifact. 

Objectives
In this study, we explore a deep learning approach to 
facilitating this challenging and time-consuming task. 
Electron microscopic examination requires examination of 
static, high-resolution digital images, and is therefore well-
suited for image recognition applications enabled by deep 
learning. Paucity of deep learning applications in renal 
pathology (especially compared with radiology and other 
areas of pathology) may be attributed to the complexity 
of implementing and the difficulty in acquiring necessary 
resources to develop a clinically relevant deep learning 
platform (6). However, recent studies suggest that this 
is changing and increasing attention is being given to 
machine learning applications in nephrology (7). 

We demonstrate a potential application of supervised 
deep learning algorithms for renal pathology practice, 
using mostly publicly available hardware and software.

Table 1. List of entities for which electron microscopy aids in diagnosis

Non-Neoplastic Neoplastic

Glomerulopathies Mesothelioma vs. Adenocarcinoma
Microbial diseases Soft tissue tumors

Cilia abnormalities Gastrointestinal tumor (GIST)

Microvillous inclusion diseases Clear cell ependymoma

Lysosomal storage diseases Dendritic reticulum cell sarcoma

Bullous skin disorders True oncocytoma

CADASIL Granular renal epithelial tumors

Peripheral neuropathies Unknown primary
Striated muscle diseases

Patients and Methods 
Platform
We used an open-source neural network library (Keras) 
running on top of TensorFlow (machine learning library). 
The hardware utilized was NVIDIA GTX 1080ti 
Graphical Processing Unit (GPU) with 11GB of RAM on 
an Intel Core i7 @ 3.7GHz CPU system with 32GB of 
RAM running Linux Ubuntu 16.04LTS.

Imaging data; pre-processing and labeling
We identified approximately 30 000 tagged image file 
format (TIFF) EM images from both native and allograft 
renal biopsies collected between 2003 and 2018 at the 
University of Illinois Hospital and Health Sciences 
System, Chicago, IL (Figure 1). From these 30 000 images 
as a starting point, and to ensure our images contain 
the relevant morphology needed for electron dense 
deposit identification, we performed natural language 
search in our lab information system (Cerner PathNet) 
to isolate cases of lupus nephritis, IgA nephropathy, 
and membranous nephropathy. This search resulted in 
isolation of 900 high-resolution images (3120 x 2190 
pixels) with confirmed immune deposits by EM on 
final diagnosis reports. Using Python scripting, each de-
identified high-resolution image was broken down in 
smaller tiles (512 × 512 pixels each). This process resulted 
in total of 4530 tiles (Figure 2A). The practice of tiling 
large (e.g. most medical) imaging data is common in deep 
learning practices due to its benefits of preventing loss 
of image spatial information as well as providing easier 
control on the parameters of the deep learning process 
while reducing the required computational power and 
memory needed for the task (8). These tiled images were 
subsequently converted to “.jpg” format to facilitate 
OpenCV software manipulation operations on the data 
(e.g., tiling). The tiles were subsequently uploaded to a 
platform that allowed facile classification of tiled images 
(Figure 2B). 

Figure 1. Sample image generated from our EM device. The image was 
taken from a patient with Lupus Nephritis where subendothelial deposits 
(arrows mark larger ones) are evident throughout. Image was generated 
natively as a .tif file with a resolution of 3120x2190 pixels.
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Two pathology residents with prior EM imaging 
experience (technicians) and one attending 
nephropathologist categorized EM deposits on 1640 
of the total 4530 tiles into one of 3 categorized based 
on presence/absence of deposits: Present, Absent, 
and Indeterminate. Only images for which there was 
consensus agreement (3/3) for positive and negative were 
used for training and validation. The resulting training 
data set included 1006 images, and the validation data set 
included 249 images. Of the 1006 images in the training 
set, 512 images had deposits present, while in 494 images, 
deposits were absent (Figure 3). 

Training
Experimental run was made using the deep neural 
architecture for VGG16, VGG19, InceptionResNetV2, 
ResNet50, NASNet and Inception-v3 networks as pre-
trained in the Keras Python package (8). Utilizing these 
pre-trained network, we compared the effectiveness of 
the neural network applied at the feature extraction 
task, and when transferring the network (using some of 
the parameters) to renal pathology image classification 
(9). For fine-tuning these models, the setup parameters 
were varied to give the optimal results for this particular 
application. Using the above pre-trained networks and 
applying their layers to extract features from pathological 
data yielded better performance (9). Through validation 
it was decided that VGG19 appears to demonstrate better 
performance (10). After the final convolutional blocks in 
VGG19, we added convolutional layers that would be 
re-trained. These layers serve as simple attention maps 
that remove parts of the image that do not contribute to 
the classification (11). These layers apply the attention 
equally to all features in that patch. Instead of using 
classical global max pooling and average pooling layers 
between convolutional layers where it indicates the precise 

regions of interest, we used rescaled global average pooling 
(12). Subsequently, one fully connected layer of size 512 
(followed by an output layer) was used to replace the 
default VGG19 fully connected layers while performing 
hyper parameter tuning to give increased performance 
(13). The optimization algorithm applied was stochastic 
gradient descent following the methodology whereby the 
step size used was small and as the learning of the model 
stagnated it was decreased to a very small value 0.00656. 
The momentum parameter of Nesterov variety was set to 
0.9. Both these parameters were varied gradually to make 

Figure 3. Overview of imaging data acquisition and labeling.

Figure 2. A. Extracted 512 × 512 pixel tiled images from high-resolution EM images of cases with known deposits. B. Process of classifying tiled images 
into deposit present, deposits absent, and indeterminate.
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sure that network did not drastically change during the 
training period (13). The model was trained for a total of 
15 epochs until the point that there was no appreciable 
change in accuracy with a batch size of five (14). To avoid 
computations on the CPU becoming a bottleneck, we 
used Tensorflow based image augmentation function that 
runs on GPU to generate extra training samples using 
various transformations such as horizontal and vertical 
flips, rotations, and crops (15).

Results
Testing the performance of the model was an integral part 
and was performed on the validation data set (249 images) 
on the Keras platform. Results were visualized by model 
performance as compared to pathologist classification 
(Figure 4).

When EM images contained deposits, our model had 
a recall (sensitivity) of 0.86 and a precision (positive 
predictive value) of 0.72. In other words, our model will 
flag 86% of the EM images deemed positive (containing 
deposits) by human renal pathologists. Also, for each 
positive flag by our model, there is a 72% probability of 
concordance with a renal pathologist.

When EM images contained no deposits, our model 
had a recall (sensitivity) of 0.69 and a precision (positive 
predictive value) of 0.84. In other words, our model will 
identify 69% of the EM images deemed negative (lacking 
deposits) by renal pathologists. Additionally, for each 
negative classification by our model, there is an 84% 
probability of concordance with a renal pathologist.

F1 score, a measure that combines recall and precision 
(harmonic mean of both), was 0.79 and 0.76 for presence 
of deposits and absence of deposits, respectively.

Overall accuracy was 0.78. In other words, 78% of 
test images were labeled correctly and same as a renal 
pathologist would. Area under the curve was 0.85 (Figure 
5). Results are summarized in Table 2.

Discussion
Glomerular, tubulointerstitial, and vascular diseases often 

require ultrastructural examination for their appropriate 
diagnosis and classification. Several ultrastructural 
features are essential for appropriate interpretation of EM 
images: presence of organized deposits, the quality/texture 
of the deposits, and the relative location of the deposits. 
Complex medical comorbidities (e.g., transplant), 
inherent variability in processing workflow for EM, 
artifactual lesions due to processing, and gray-scale nature 
of the imaging make it difficult to definitively identify 
organized electron dense deposits from mimickers such 
as artifact, hyaline and mesangial interposition (16). For 
this reason, we sought to investigate the feasibility of a 
supervised deep learning approach for EM image analysis 
challenges. 

Electron microscopic studies are well-suited for machine 
learning applications, since the studies are acquired in 
high resolution digital format. This feature is in contrast 
to hematoxylin & eosin (H&E) stained glass slide images 
where the primary product is a glass slide that secondarily 
undergoes digitization through scanning. For this reason, 
we see EM as a suitable, cost effective, application for pilot 
deep-learning deployment in clinical practice for renal 
pathologists (17). 

We set to prototype a clinically relevant deep learning 
approach to help in detecting electron-dense immune 
deposits in medical renal biopsies. As a first step in this 
direction and to start with an achievable scope, we aimed to 
train a model that can distinguish between the presence or 
absence of organized deposits in EM images. Our primary 
aim was to develop an approach that is implementable 
using accessible resources, such as commercially available 
deep learning frameworks and workstations. Additional 
insights and answers to more complex questions (eg, 
localization of deposits) can certainly be gleaned with 
more advanced resources, including additional data, 
computing power, and clinical expertise. 

Our results were achieved with minimal resources and 
primarily intra-departmental staffing, including residents, 
graduate students, and fellows. Aside from proving 
the feasibility of this approach, the accessible resources 

Figure 4. Sample images from model performance on testing images, that were reviewed by renal pathologist. Each image demonstrates the model’s predicted 
label and the actual label assigned by pathologist. 0 = deposits absent; 1 = deposits present.
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utilized further enables the incorporation and application 
of machine learning concepts into training programs. 
The use of commercially available software/hardware that 
is approachable for the non-technical individual lowers 
the apprehension trainees often feel when attempting to 
involve themselves in machine learning projects. There 
is increasing support for training in machine learning to 
be incorporated into pathology residency programs to 
prepare residents for employment positions (18). 

The performance of our machine learning model is 
competitive within the context of relatively limited data 
set that was assembled. Nonetheless, much can still to be 
done for improving the performance and generalizability 
through enriching the data set (e.g. including subsets of 
artifacts and resorbed deposits) and fine-tuning neural 
network parameters and additional customization of the 
neural network. Segmentation of electron-dense deposits 
within training data would further enhance the specificity 
of classification and feature identification. Enriching 
the data with extra-institutional images would increase 
generalizability of the model as well. Finally, including 
a broader set of disease entities would also contribute to 
robustness of model performance if a correlation exists 
between disease and morphologic appearance of electron 
dense deposits. Overall, our findings suggest that deep 
learning algorithms have potential for facilitating the 
task of identifying organized deposits in EM images, and 
thereby aiding the renal pathologist in their workflow.

While our prototype was limited to a two classes classifier, 
future potential applications of this deep learning approach 
could include a localization and/or further characterization 
of the deposits. An interface for such functionality could 
overlay bounding boxes or segmentations or contours 
around these deposits, an approach commonly applied 
to scanned H&E images (19). Further calculations to aid 
in deciding predominant distributions (e.g., subepithelial 
versus subendothelial) could also be implemented. In 
addition to deposit localization, models can be trained 

to classify the composition of the deposits (e.g., amyloid 
versus non-amyloid), based on high-power morphological 
appearance of fibrils (e.g, diameter, organization, etc.). 
Moreover, investigating the molecular nature of these 
deposits (e.g. amyloid AA vs amyloid AL, etc.) could 
prove to be cost and time saving; for this scenario data 
sets should be matched to those of molecular/proteomic 
studies. The challenge for these additional explorations 
includes gathering sufficient high-quality data sets to 
enable robust training and validation.

Most important future effort, however, should focus on 
dedicating resources to validate such a prototype in the 
actual clinical workflow. This could start with a pilot to 
execute our algorithm on clinical EM images and share 
results with the renal pathologist on service. Registering 
the feedback from practicing renal pathologists and fine 
tuning to their preferences could be the first step in 
promoting the utility of our approach and deep-learning 
approaches in general. Workflows for such incorporation 
do not have to be complex. In our institution, EM images 
are stored on a network drive outside of the electronic 
medical record and radiology picture archiving and 
communication system. The EM images are viewed with 
basic operating system image viewers. Incorporating a 
deep-learning algorithm in the clinical workflow could 
be as simple as having a technical staff member from 
the EM lab make a copy of EM images for a certain 
case, run the prediction of the trained algorithm in a 
standalone environment, and share the results with the 
renal pathologist as a second copy of the EM images for 
their review. Ideally, the electron medical record would 
contain the images and the trained algorithms, allowing 
the pathologist to workflow to be seamless and less prone 
to error. 

Finally, departmental lead initiatives are of paramount 
importance to set adoption of this technology to success. 
In a 2019 survey of the global pathology community, 
around 80% of the respondents indicated their belief that 
artificial intelligence technology would be incorporated 
into pathology/laboratory practice within ten years 
(20). Given the exponential academic and translational 
interest in applying machine learning to improve patient 
care, training programs are recognizing the importance 
of incorporating these concepts into training pathway. 
Studies that include readily available and accessible 
resources such as ours allow trainees from a variety of 
background to develop familiarity with the benefits and 

Figure 5. Model prediction area under the curve (AUC).

Table 2. Summary of performance metrics

Deposits Precision Recall F1-score Image count

Absent 0.84 0.69 0.76 124
Present 0.72 0.86 0.79 116

Accuracy on test data: 0.78
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limitations of this emerging technology. 

Conclusion
Our results provide support for the potential use of deep 
learning approach as a tool to identify electron-dense 
immune deposits in medical kidney disease. Factors 
promoting adoption of deep learning methods into 
renal pathologist practice include: EM images natively 
digital acquisition, increasing availability of deep learning 
platforms (especially from commercial sector), and 
decreasing costs of hardware (eg, GPU) and cloud-based 
solutions. Integration of machine learning models should 
ideally be done with the electronic medical record; however, 
the short-term roadmap likely will employ these models 
outside of the electronic medical record. Familiarity with 
machine learning methods and working within teams that 
leverage machine learning is increasingly being recognized 
as skills of future physician leaders. 

Limitations of the study 
The study was limited primarily by data set constraints. 
This included both the total volume of images collected, 
as well as the variety of disease entities represented by the 
images. Furthermore, images from multiple institutions 
would contribute the generalizability of the model.
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